NYU Abu Dhabi researchers demonstrate organic crystals can serve as energy converters for emerging technologies

New York University

Abu Dhabi, UAE, May 20, 2022: New research by a team of researchers at the NYU Abu Dhabi (NYUAD) Smart Materials Lab published today in the journal Nature Communications demonstrates that organic crystals, a new class of smart engineering materials, can serve as efficient and sustainable energy conversion materials for advanced technologies such as robotics and electronics.

While organic crystals were previously thought to be fragile, the NYUAD researchers have discovered that some organic crystals are mechanically very robust. They developed a material that establishes a new world record for its ability to switch between different shapes by expansion or contraction over half of its length, without losing its perfectly-ordered structure.

In the study titled Exceptionally High Work Density of a Ferroelectric Dynamic Organic Crystal around Room Temperature, the team, led by NYUAD Professor of Chemistry Panče Naumov, presents the process of observing how the organic crystalline material reacted to different temperatures. The researchers found that the organic crystals were able to reversibly change shape in a similar manner to plastics and rubber. Specifically, this material could expand and contract over half of its length (51 percent) repeatedly, over thousands of cycles, without any deterioration. It was also able to both expand and contract at room temperature, as opposed to other materials that require a higher temperature to transform, creating higher energy costs for operation.

Unlike traditional materials that are silicon- or silica-based, and inevitably stiff, heavy and brittle, the materials that will be used for future electronics will be soft and organic in nature. These advanced technologies require materials that are lightweight, resilient to damage, efficient in performance, and also have added qualities such as mechanical flexibility and ability to operate sustainably, with minimal consumption of energy. The results of this study have demonstrated, for the first time, that certain organic crystalline materials meet the needs of these technologies, and can be used in applications such as soft robotics, artificial muscles, organic optics, and organic electronics (electronics created solely from organic materials).

“This latest discovery from the Smart Materials Lab at NYUAD builds on a series of our previous discoveries about the untapped potential of this new class of materials, which includes adaptive crystals, self-healing crystals, and organic crystalline materials with shape memory,” said Naumov. “Our work has shown that organic crystals can not only meet the needs of the emerging technologies, but in some cases can also surpass the levels of efficiency and sustainability of other, more common materials.”


About NYU Abu Dhabi


NYU Abu Dhabi is the first comprehensive liberal arts and research campus in the Middle East to be operated abroad by a major American research university. NYU Abu Dhabi has integrated a highly selective undergraduate curriculum across the disciplines with a world center for advanced research and scholarship. The university enables its students in the sciences, engineering, social sciences, humanities, and arts to succeed in an increasingly interdependent world and advance cooperation and progress on humanity’s shared challenges. NYU Abu Dhabi’s high-achieving students have come from over 115 countries and speak over 115 languages. Together, NYU’s campuses in New York, Abu Dhabi, and Shanghai form the backbone of a unique global university, giving faculty and students opportunities to experience varied learning environments and immersion in other cultures at one or more of the numerous study-abroad sites NYU maintains on six continents.

/Public Release. This material from the originating organization/author(s) may be of a point-in-time nature, edited for clarity, style and length. The views and opinions expressed are those of the author(s).View in full here.